Thursday, July 6, 2023

ASTROCYTES

 


Astrocytes are the major glial cell type in the non-myelinated optic nerve head (ONH) in most mammals and provide cellular support functions to the axons while interfacing between connective tissue surfaces and surrounding blood vessels.

Astrocytes form a mesh-like network on the surface of the retina and tightly contact blood vessels and retinal ganglion cell (RGC) axons.





ONH astrocytes are responsible for the normal maintenance of the extra-cellular matrix (ECM) in normal eyes. These cells are sensitive to mechanical or ischemic factors and are important for the maintenance of retinal ganglion physiology.

1A astrocytes provide structural support for the axons, with type 1B cells providing a physiological interface between the vitreous connective and vascular tissues.

In the normal ONH, astrocytes are considered to be quiescent.



In the lamina cribrosa, astrocytes form lamellae, oriented perpendicular to the axons surrounding a core of fibroelastic extracellular matrix.



Astrocytes supply energy substrate to axons in the optic nerve and maintain extracellular pH and ion homeostasis in the periaxonal space. Sodium channels in astrocytes participate in Na+ homeostasis, providing a path for Na+ entry into the cytoplasm.

In astrocytes, voltage-gated calcium channels deliver Ca2+ into the cytoplasm and participate in generation of glial Ca2+ signals.

Astrocytes maintain the scant periaxonal ECM consisting of glycoproteins, such as laminin and proteoglycans.

Astrocytes express a wide variety of growth factors and receptors, many of which serve as trophic and survival factors for neurons.

Astrocytes are the cells responsible for many pathological changes in the glaucomatous optic nerve head (ONH).

Astrocytes become reactive in response to injury or disease and participate in the formation of a glial scar, which does not support axonal survival or growth.

The major hallmarks of a reactive astrocyte are an enlarged cell body and a thick network of processes with increased expression of GFAP and vimentin.

Reactive astrocytes increase expression of various cell surface molecules that play important roles in cell–cell recognition and in cell adhesion to substrates, as well as various growth factors, cytokines, and receptors. Reactive astrocytes express many new ECM proteins such as laminin, tenascin C, and proteoglycans.

Reactive astrocytes in the glaucomatous ONH are large rounded cells with many thick processes which expresses increased amounts of GFAP, vimentin, and HSP27.

Recent evidence suggests that optic nerve head astrocytes, which have long been recognized as important components of the optic nerve head, may underlie this process and be central to the initiation of glaucomatous optic atrophy. These cells probably have a direct toxic effect on the RGC axons.

In glaucoma, reactive astrocytes have been shown to migrate from the cribriform plates into the nerve bundles and synthesize neurotoxic mediators such as nitric oxide (NO) and TNF-α, which may be released near axons causing neuronal damage.

Reactive astrocytes in the ONH express large amounts of elastin, leading to elastotic degeneration of the ECM in glaucoma and loss of resiliency and deformability in response to elevated IOP.

ONH astrocytes may offer neuroprotection in the optic nerve by releasing glutathione (GSH) and antioxidant enzymes to eliminate the products of chronic oxidative stress that may be contributing to the progression of neurodegeneration in POAG.

Astrocyte dysfunction could disrupt axoplasmic transport and initiate the changes in cribrosal physiology that are said to be secondary to the mechanical effects of raised IOP or to ischemic damage secondary to optic disc hypoperfusion.

This hypothesis implies that significant disturbances of astrocyte metabolism may predispose to axon loss and initiate changes in cribrosal structure. Thus, the collapse of cribrosal beams, rather than initiating axon loss, may be as much the result of astrocyte fallout.



No comments:

Post a Comment

IOP rise in consensual eye after glaucoma surgery

  A significant increase in IOP in the fellow eye (FE) after glaucoma surgery in the index eye (IE) has been noted by some researchers. A...